
Clean Code Fundamentals
Function Structure



Pre-work

• Video: https://cleancoders.com/episode/clean-code-episode-4
• Exam: https://cleancoders.com/episode/clean-code-episode-4/exam

https://cleancoders.com/episode/clean-code-episode-4
https://cleancoders.com/episode/clean-code-episode-4/exam


Chapters

Chapter Time

Overview 00:00:55
Fusion 00:04:29
Arguments 00:09:09
Three Arguments Max 00:10:10
No Boolean Arguments Ever 00:12:19
Innies not Outies 00:14:00
The Null Defense 00:15:27
The Stepdown Rule 00:17:22
Switches and Cases 00:28:24
Paradigms 00:40:51
Functional Programming 00:41:31
Side Effects 00:43:28
Command Query Separation 00:47:28

Chapter Time

Tell, Don’t Ask 00:51:35
Structured Programming 00:56:32
Early Returns 01:00:13
Error Handling 01:02:55
Errors First 01:06:30
Prefer Exceptions 01:08:04
Exceptions are for Callers 01:05:49
Use Unchecked Exceptions 01:09:49
Special Cases 01:15:17
Null is not an Error 01:19:59
Null is a Value 01:24:23
Trying is One Thing 01:27:09
Conclusion 01:28:00



Timetable

Activity Time

Warmup 5 min
Exercise 1 20 min
Exercise 2 20 min
Exercise 3 20 min
Wrap up 5 min



Warmup

• In your practice, what do you find the most useful technique to organize code
within a function or a class?

Type in the meeting chat



Exercise 1

• Prompt
Collaborate to build the list of principles and techniques your learned from the video
episode.
You must have at least 10 principles and techniques.

• Time limit: 10 minutes



Possible answer

• Function signature should be small - 3 or less arguments
• Avoid “output” arguments
• Avoid passing boolean values and null
• Limit the use of switch statements to top-level factory functions
• Limit the inter-dependencies by using the principle of the least knowledge
• “Pass a block” to solve the temporal coupling problem
• Use early returns to reduce the nesting level
• Avoid breaks/returns in a middle of a loop
• Prefer exceptions to error codes
• Separate commands and queries
• Tell, don’t ask



Design patterns

• Definition
A general reusable solution to a commonly occurring problem within a given context
in software design.
A template for how to solve a problem that can be used in many different situations.

• Examples
Null Object
Factory

• Categories
Creational
Structural
Behavioral
Concurrency

• Catalog
Design Patterns
Software design pattern

https://en.wikipedia.org/wiki/Null_object_pattern
https://en.wikipedia.org/wiki/Factory_method_pattern
https://refactoring.guru/design-patterns
https://en.wikipedia.org/wiki/Software_design_pattern


Exercise 2

• Prompt
Introduce categories to split items from Exercise 1 into
Make sure to create at least three categories
Make sure to create an effective list!

• Time limit: 10 minutes



Possible answer

• Simplify function signature
Function signature should be small – three or less arguments
Avoid “output” arguments
Avoid passing boolean values and null

• Reduce coupling
Limit the use of switch statements to top-level factory functions
Limit the inter-dependencies by using the principle of the least knowledge
“Pass a block” to solve the temporal coupling problem

• Clarify control flow
Use early returns to reduce the nesting level
Avoid breaks/returns in a middle of a loop
Prefer exceptions to error codes

• Clarify state management
Separate commands and queries
Tell, don’t ask



Exercise 3

• Prompt
Select top 3 principles and techniques from Exercise 1 by the highest ROI
High return, low time effort cost
Refer to your experience, if applies
Explain and justify your choice

• Time limit: 10 minutes



Possible answer

1. User early returns
Low effort
Clarifies the control flow

2. “Pass a block” to solve the temporal coupling problem
Medium effort
Helps to avoid critical bugs in resource management

3. Avoid “output” arguments
Medium effort
Make code more readable and less error-prone



Summary

• Simplify function signature
Function signature should be small – 3 or less arguments
Avoid “output” arguments
Avoid passing boolean values and null

• Reduce coupling
Limit the use of switch statements to top-level factory functions
Limit the inter-dependencies by using the principle of the least knowledge
“Pass a block” to solve the temporal coupling problem

• Clarify control flow
Use early returns to reduce the nesting level
Avoid breaks/returns in a middle of a loop
Prefer exceptions to error codes

• Clarify state management
Separate commands and queries
Tell, don’t ask



Wrap-up

Call to action!

Next 7 days focus on using the techniques from this episode in your day-to-day work.



What is next?

• Expect an e-mail with instructions for upcoming coding dojo



Final words

Always leave the code better than you found it.
– The Software Craftsmanship Rule


